1. About the Denver LAMP meetup group

1.Host a presentation every 1-3 months
2.Cover 1-3 related topics per meeting

3.Goal is to provide high quality education and
networking, for free

2. The purpose of Denver LAMP meetups

1.To keep up with web development technologies
2.To explore new web developer job opportunities
3. To meet and hire web developers for job openings

4.To meet related specialists in the Denver area
3. Volunteers needed for several positions

Be Smart

What you learn s for:

* Educational purposes only

* Penetration testing and securing your website(s)
What you learn is not for:

* Penetration testing any website besides your own
(without written permission)

* Doing anything destructive or illegal to any website

| am not responsible for what you do after
leaving here. Don't be stupid.

Top Vulnerabilities of 2011

* Cross-Site Scripting (XSS)

* Information Leakage

* Content Spoofing
 |nsufficient Authorization

* Cross-Site Request Forgery

* Brute Force

* Predictable Resource Location
e SQL Injection

Top Vulnerabilities of 2011

53%
36%
21%
1)z
ol 16%
12% W 11% 10%

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

 Report presents a statistical picture of current
website vulnerabilities, among 7,000 websites

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

e Cross-Site Scripting (XSS) represents 50% of
the overall vulnerability population

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Cross-Site Scripting (XSS) attacks

| nfect with script

Inject script

Do samething bad

A High Level View of a typical XSS Attack

Image Copyright acunetix.com

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once

* Fragment identifier introduced by a hash mark #
that is printed on the page once

« $ POST variable that is printed on the page once

« $ POST variable that is saved to database and
printed on the page repeatedly

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

1. Sends URL containing a

hidden script
r
4. Browser executes script —

and sends private data
2. Follows URL 3. Serves page

containing script

SomelegitSite.com

Image Copyright seomoz.org

containing script

Cross-Site Scripting (XSS) attacks

$ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

Malicious value: <script>alert('xss')</script>

How to penetration test the page

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

 How to sanitize with PHP and regular expressions

- This technique first makes the input value lowercase, and
second strips all characters except lowercase letters,
numbers and spaces.

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

 How to sanitize with PHP and regular expressions

- The malicious code becomes: scriptalertxssscript

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

* Or use an existing PHP library to sanitize
- HTML Purifier, Safe HTML Checker, htmLawed, etc.

Library Version Date License XSS safe
striptags n/a n/a n/a No
PHP Input Filter 1l 2005-10-05 GPL Probably
HTML_Safe 0.9.gbeta 2005-12-21 BSD(3) Probably

kses .2.9 2005-02-06 GPL Probably
htmLawed 1.G. 2009-02-26 GPL Probably
Safe HTML Checker n/s 2003-09-15 n/a Ves
HTML Purifier 4.4.C 2012-01-18 LGPL Yes

Cross-Site Scripting (XSS) attacks

« $ GET variable that is printed on the page once
« Example: chrisbaril.com/search.php?q=

« How to sanitize with HTML Purifier

- Learn more @ http://htmlpurifier.org/docs

Cross-Site Scripting (XSS) attacks

* Fragment identifier introduced by a hash mark #
that is printed on the page once

e Example: chrisbaril.com/search#

1. Sends URL containing a

hidden script
f
-

4. Browser executes script

and sends private data
2. Follows URL 3. Serves page

containing script

SomelegitSite.com

Image Copyright seomoz.org

containing script

Cross-Site Scripting (XSS) attacks

Fragment identifier introduced by a hash mark #
that is printed on the page once

Example: chrisbaril.com/search#

Malicious value: <script>alert('xss')</script>

How to penetration test the page

Cross-Site Scripting (XSS) attacks

* Fragment identifier introduced by a hash mark #
that is printed on the page once

« Example: chrisbaril.com/search#

* How to sanitize with jQuery and regular expressions

- This technique strips all characters except letters and
numbers from the fragment identifier.

Cross-Site Scripting (XSS) attacks

* Fragment identifier introduced by a hash mark #
that is printed on the page once

« Example: chrisbaril.com/search#

* How to sanitize with jQuery and regular expressions

- The malicious code becomes: scriptalertxssscript

Cross-Site Scripting (XSS) attacks

« $ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

Image Copyright seomoz.org

Cross-Site Scripting (XSS) attacks

$ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

Malicious value: <script>alert('xss')</script>

How to penetration test the page

- Form input value:

Cross-Site Scripting (XSS) attacks

« $ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

 How to sanitize with PHP and regular expressions

- This technique first makes the input value lowercase, and
second strips all characters except lowercase letters,
numbers and spaces.

Cross-Site Scripting (XSS) attacks

« $ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

 How to sanitize with PHP and regular expressions

- The malicious code becomes: scriptalertxssscript

Cross-Site Scripting (XSS) attacks

« $ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

* Or use an existing PHP library to sanitize
- HTML Purifier, Safe HTML Checker, htmLawed, etc.

Library Version Date License XSS safe
striptags n/a n/a n/a No
PHP Input Filter 1l 2005-10-05 GPL Probably
HTML_Safe 0.9.gbeta 2005-12-21 BSD(3) Probably

kses .2.9 2005-02-06 GPL Probably
htmLawed 1.G. 2009-02-26 GPL Probably
Safe HTML Checker n/s 2003-09-15 n/a Ves
HTML Purifier 4.4.C 2012-01-18 LGPL Yes

Cross-Site Scripting (XSS) attacks

« $ POST variable that is printed on the page once
« Example: chrisbaril.com/search.php

« How to sanitize with HTML Purifier

- Learn more @ http://ntmlpurifier.org/docs

Cross-Site Scripting (XSS) attacks

« $ POST variable that is saved to database and
printed on the page repeatedly

« Example: chrisbaril.com/editprofile.php

Image Copyright hacking-class.blogspot.org

Cross-Site Scripting (XSS) attacks

$ POST variable that is saved to database and
printed on the page repeatedly

Example: chrisbaril.com/editprofile.php

Malicious value: <script>alert('xss')</script>

How to penetration test the page
- Form input value:

Cross-Site Scripting (XSS) attacks

« $ POST variable that is saved to database and
printed on the page repeatedly

« Example: chrisbaril.com/editprofile.php

 How to sanitize with PHP and regular expressions

- This technique first makes the input value lowercase, and
second strips all characters except lowercase letters,
numbers and spaces.

Cross-Site Scripting (XSS) attacks

« $ POST variable that is saved to database and
printed on the page repeatedly

« Example: chrisbaril.com/editprofile.php

 How to sanitize with PHP and regular expressions

- The malicious code becomes: scriptalertxssscript

Cross-Site Scripting (XSS) attacks

« $ POST variable that is saved to database and
printed on the page repeatedly

« Example: chrisbaril.com/editprofile.php

e Or use an existing PHP library to sanitize
- HTML Purifier, Safe HTML Checker, htmLawed, etc.

Librarv Version Date License XSS safe
striptags n/a n/a n/a
PHP Input Filter 1.2.2 2005-10-05 GPL)
HTML_Safe 0.9.gbeta 2005-12-21 BSD(3) Probably

kses 3.2,2 2005-02-06 GPL Probably
htmLawed 1.9. 2009-02-26 GPL Probably
Safe HTML Checker n/s 2003-09-15 n/a Ves
HTML Purifier 4.4.C 2012-01-18 LGPL Yes

Cross-Site Scripting (XSS) attacks

« $ POST variable that is saved to database and
printed on the page repeatedly

« Example: chrisbaril.com/editprofile.php

e How to sanitize with HTML Purifier

- Learn more @ http://htmlpurifier.org/docs

Cross-Site Scripting (XSS) attacks

e <script>alert('xss')</script>
« <script src=http://*.com/xss.js></script>

* Body tag
- <body onload=alert("xss")>
- <body background="javascript:alert('xss')">

Cross-Site Scripting (XSS) attacks

Img tag

-

Iframe tag

- <iframe src="http://*.com/xss.js">

Input tag

- <input type="image” src="javascript:alert('xss')">
* Link tag

- <link rel="stylesheet” href="javascript:alert('xss')">

Cross-Site Scripting (XSS) attacks

* Table tag
- <table background="javascript:alert('xss')">
 Tdtag
- <td background="javascript:alert('xss')">
* Div tag
- <div style="background-image: url(javascript:alert('x’))">
- <div style="width: expression(alert('x));">

javascript:alert('x

Cross-Site Scripting (XSS) attacks

* Object tag
- <object type="text/x-scriptlet" data="http://*.com/x.htm[">
 Embed tag

- <embed src="http://*/x.swf" AllowScriptAccess="always">

- owasp.org/index.php/XSS_Filter Evasion Cheat_Sheet

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

* Information Leakage represents 9% of the
overall vulnerability population

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Information Leakage attacks

fstepp * CSE 190 M, Spring

€ & https://webster.cs.washington.edu

Index of /stepp

Name Last modified Size De

a Parent Directory

Sball! 20-Apr-2009 14:38

Image Copyright cs.washington.edu

Information Leakage attacks

 When a hacker tries to find exploitable targets and
sensitive data by using search engines

* |nvolves using advanced operators to locate
specific strings of text within search results

 There are a number of tools available that help to
automate this process

Information Leakage attacks

e Search: "password: *" filetype:xls site:*.com

« Search: "your password is" filetype:log site:*.com

« Search: "Welcome to phpMyAdmin" " Create new

database" site:*.com

Information Leakage attacks

A database of queries that identify sensitive data
Developed by Johnny Long
http://johnny.ihackstuff.com/ghdb/

Over $100,000 in commercial scanner options

www.owasp.org/images/2/28/Black_Box_ Scanner
Presentation.pdf

Information Leakage attacks

Searches Google’s cache to look for vulnerabilities,
errors, configuration issues, proprietary information,
and interesting security nuggets on web sites

Capable of utilizing the GHDB of search queries
Does not violate the Google terms of service

http://www.mcafee.com/us/downloads/free-
tools/sitedigger.aspx

Information Leakage attacks

Advisories and server vulnerabilities

Error messages that contain too much information
Files containing passwords

Sensitive directories

Pages containing logon portals

Pages containing network/vulnerability data via logs

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

 Content Spoofing represents 14% of the overall
vulnerability population

Conent
Spoofing
14%

SQL Injection
4%

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Content Spoofing attacks

e Content Spoofing is when an attacker presents
a faked or modified Web site to the user as if it
were legitimate

rrf.r',;ﬁf'ﬂ o ™ f}"ﬂff:—; fe f';f* b

~—

e Velowvee! J'.;;f thetr

beeritedd of - Yoesie cere 1

tietedd oo ¥ thes

Content Spoofing attacks

* Intent is usually to defraud victims (phishing)

« Sometimes the purpose is simply to
misrepresent an organization or an individual

Content Spoofing attacks

« $ GET variable that is printed on the page once
« $ GET variable that identifies the source of a frame

GRETCHEN BRIAN =«
T:Y CARLSON KILMEADE®™

Content Spoofing attacks

« $ GET variable that is printed on the page once

« Example: www.chrisbaril.com/news?
Id=0020&title=News+title+goes+here

14

f”J ,
e B

Tha
pcidentia
"Tl'?‘;"hcunto

Content Spoofing attacks

$ GET variable that is printed on the page once

Example: www.chrisbaril.com/news?
iId=0020&title=SPOOFED+CONTENT+HERE

Common on error pages
Or sites providing story or news entries

Content Spoofing attacks

« $ GET variable that identifies the source of a frame

« Example: www.chrisbaril.com/page?
frame_src=http://*.com/file.html

—

Y —

|] e
L, -] # | —
& I 'l_ T
Y
‘ - A
4 = %

) . &2
= l B

N
IR 2012

Content Spoofing attacks

« $ GET variable that identifies the source of a frame

« Example: www.chrisbaril.com/page?
frame_src=http://*.com/SPOOFED.html

* Foreign data is shrouded by legitimate content

Content Spoofing attacks

e E-malil
» Bulletin Board Postings
e Chat Room Transmissions

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

 |nsufficient Authorization represents 4% of the
overall vulnerability population

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Insufficient Authorization attacks

“The boss is worried about information security,
50 he sends his messages one alphabet letter
at a time in random sequence.’

Image Copyright glasbergen.com

Insufficient Authorization attacks

« $ GET variable that is an auto-incremented id
« Example: www.chrisbaril.com/RecordView?id=1234

Image Copyright glasbergen.com

Insufficient Authorization attacks

« $ GET variable that is an auto-incremented id
« Example: www.chrisbaril.com/RecordView?id=

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

* Cross-Site Request Forgery (CSRF) represents
4% of the overall vulnerability population

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Cross-Site Request Forgery (CSRF)

 CSREF is an attack which forces an end user to
execute unwanted actions on a web application
in which he/she is currently authenticated

* By sending a link via email/chat, an attacker
may force the users of a web application to
execute action

« CSRF (aka C-SURF aka Confused-Deputy)
attacks only work if the target is logged into the
system, and therefore have a small attack
footprint

Cross-Site Request Forgery (CSRF)

« CSRF attacks exploit “ease of use” features on
web applications (One-click purchase)

 Funds Transfer, Form submission, etc.

* Any application that accepts HT TP requests
from an authenticated user without having
some control to verify that the HTTP request is
unique to the user's session is vulnerable

Cross-Site Request Forgery (CSRF)

» Checking if the request has a valid session cookie
IS not enough

» Must check if a unique identifier is sent with every
HTTP request sent to the application

* Unique identifier must be rendered as a hidden field
on the page and appended to the HT TP request
once a link/button press is selected

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

Conent
Spoofing
14%

SQL Injection

4%

Response Sp
3%
Insufficient
Authorization
b 5 4%
Information 3
Leakage Predictable Resource
a%ag Other Location

9% 8% 2%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Brute Force attacks

* Once an attacker knows the username or email of
the victim, they can write a script to try logging in
with different passwords

» Force users to use passwords with at least (1) one
capital letter, (2) one number, (3) one special
character, (4) eight total characters

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

* Predictable Resource Location represents 4%
of the overall vulnerability population

Conent
Spoofing
14%

SQL Injection |

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

Predicatable Resource Location

 |le. temporary files, backup files, logs, administrative
site sections, configuration files, demo applications,
sample files, etc

» Since files/paths often have common naming
convention and reside in standard locations

Top Vulnerabilities of 2011

21% ey

16% |

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Percentage likelihood that at least one serious* vulnerability will appear in a website

Image Copyright whitehatsec.com

Top Vulnerabilities of 2011

 SQL Injection represents 4% of the overall
vulnerability population

Conent
Spoofing
14%

SQL Injection
4%

Leakage
9%

Percentage breakdown of all the serious* vulnerabilities discovered

Image Copyright whitehatsec.com

SQL Injection attacks

HL, THIS 15 OH DEAR - DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME IN A WAY) Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. J / ITHE[J‘__ Studerts; -~ 7 ‘]l

L AND I H{FE

Qw OH. YES. LITTLE = YOUVE LEARNED
BOBRBY TARLES, 1 TOSANMIZE YOUR
WE CALL HIM. DATARASE INPUTS,

SQL Injection attacks

e Sanitize variables that are used as database inputs
e Heard that advice before?

HL, THIS 15 OH DEAR - DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SONS SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME N A WAY-) Robert'); DROP I HOPE YOURE HAPPY.
(OMPUTER TROUBLE. ‘ [TABLE Gtudents; -~ 7 !

/
N ,r“j " v AND T HOPE
QJ OH.YES LITTE ™ YOUVE LEARNED

ROBBY TARLES, "IN 7O SANMIZE YOUR
WE CALL HIM. DATARASE INPUTS.

In Conclusion

Validate user input
Use secure authentication services

Make sure only authorized users can perform
actions allowed within their privilege level

Practice good session management

Protect your code against attacks from common
Interpreters

In Conclusion

Protect confidentiality and integrity with
cryptography

Use best practices when it comes to error handling
Protect the file system

Make sure your code runs securely out of the box,
don’'t assume it is the responsibility of the operator
to secure it

Be aware that Web 2.0 technologies also pose
security risks

We're Done

* Any questions?

* Does anyone want to announce a job opening?

 \Who wants to continue the discussion over
drinks? Anyone know of a local spot?

